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Improvement of Chiral Discrimination of Acidic
Enantiomers on Teicoplanin Stationary Phase by the
Use of Chaotropic Effect

J. Flieger

Department of Analytical Chemistry, Medical University of Lublin,
Lublin, Poland

Abstract: This work reveals new advantages of using inorganic salts with
chaotropic anions (perchlorate, hexafluorophosphate) as mobile phase additives
in enantioseparation of acidic compounds (mandelic acid, tropic acid, phenyllac-
tic acid, 2-(p-methoxyphenoxy)-propionic acid) on teicoplanin-based stationary
phase in reversed phase mode. It was observed that the retention factors (k)
and the separation factors (a) of acidic analytes increased in the presence of salts
in the mobile phase. The standard changes in enthalpy (AH®), entropy (AS®), and
the free energy (at 20°C) (AG®) of the binding interactions between enantiomers
and the chiral selector in the stationary phase were calculated from the experi-
mental relationships of In k vs 1/T in the presence of chaotropic salts in eluent
systems. The Van’t Hoff plots reveal that the interaction mechanism in the pre-
sence of chaotropic additives is enthalpy driven. Enthalpy-entropy compensation
(EEC) studies revealed mechanistic similarity in retention of the investigated
compounds.
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INTRODUCTION

Macrocyclic antibiotics are a recent class of chiral selectors, successfully
applied to enantiomeric resolution in liquid chromatography.!' "' They
were introduced by Armstrong in 1994!'"°1%1 a5 a new chiral selector.
Different antibiotics (vancomycin, teicoplanin, thiostrepton, rifamycin B,
kanamycin, streptomycin, fradiomycin, and ristocetin A) have been
tested as potential chiral selectors, but only a few are commercially avail-
able: vancomycin (Chirobiotic V), teicoplanin (Chirobiotic T), teicopla-
nin aglycone (Chirobiotic TAG), and ristocetin A (Chirobiotic R).
Macrocyclic antibiotics are also employed as chiral selectors in other
separation techniques like capillary electrophoresis,!'”-'®! subcritical fluid
chromatography,"'”! thin layer chromatography.”” An extensive review
devoted to chiral separations using macrocyclic antibiotics was published
by T. J. Ward et al.?!}

Teicoplanin-based CSPs belonging to this class of stationary phases
possess 20 chiral centres surrounded by four fused macrocyclic rings
forming a semi rigid structure. There are many functional groups such
as: hydroxylic, aminic, amidic, carboxylic, as well as aromatic moieties
and hydrophobic pockets, offering different molecular interactions
including: electrostatic interactions, n-m complexation, hydrogen bond-
ing, dipole-dipole, and the weakest ones, of steric and inclusion type.
To explain enantioselectivity of these phases, a number of models have
been proposed. Most of them are based on the three point interactions
theory developed by Dalgliesh in 1952.% This theory assumed, that at
least three simultaneous interactions (one of them should be stereochemi-
cally dependent) between the chiral centre and appropriate enantiomer
are conditio sine qua non of the chiral recognition process.

Chirobiotic stationary phases have demonstrated enantioselectivity
towards different classes of compounds (neutral, basic, acidic), either in
normal and reversed phase modes or polar organic, or new polar ionic
ones. The polar organic mode is recommended for neutral compounds.
In this system, acceptable selectivity could be obtained by the use of pure
methanol, ethanol, or acetonitrile. Compounds possessing ionizable
groups require an addition of a small amount of base, such as triethyla-
mine and acetic acid, or volatile salt. The most popular additives are
triethylamine and acetic acid. Lee et al. tested different ammonium salts
such as: formate, acetate, and trifluoroacetate for this purpose.**) Most
of the described enantiomeric separations on the Chirobiotic columns
can be accomplished by the use of reversed-phase mode with an aqueous-
organic eluent system where selectivity could be controlled by the changes
in mobile phase composition: type and concentration of either organic
modifier or buffer system. Usually, to enhance the ionization of analytes,
the following buffer types are recommended: triethylammonium acetate,
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ammonium acetate, ammonium nitrate, and sodium citrate. These sys-
tems make it possible to achieve a pH range of 3.5 to 7.0, the safest
and the most stable conditions for chirobiotic CSPs. In reversed-phase
mode, different interactions may take place: ionic, H-bonds, steric, inclu-
sion, and hydrophobic, but it should be stressed that the primary binding
interactions between ionized groups of CSP and appropriate enantiomer
appear to occur due to electrostatic attraction forces at high organic modi-
fier content, whereas at low organic solvent concentration hydrophobic
interactions are the most important ones.

In the present studies, chosen acidic compounds were enantiosepa-
rated on teicoplanin-based CSP using methanol-water as a mobile phase
with inorganic salts (hexafluorophosphates, perchlorates) additives
as ion-ion interaction reagents. These salts are located at the end of the
Hofmeister series. They are known as chaotropic salts or “order break-
ing” (chaos tropic), as they can damage the network of the hydrogen
bonding between water molecules making hydrophobic interactions
stronger. Enrichment of the mobile phase with chaotropic additives causes
increasing of salting-in effect, decreasing of surface tension, increasing of
ion-pairing process, and decreasing of the ions solvation. So far, the
chaotropic effect was beneficial in the chromatography of ionic basic
analytes in reversed-phase liquid chromatography.[** 3"

EXPERIMENTAL
Materials and Reagents

Investigated acidic (mandelic acid, phenyllactic acid, tropic acid, 2-p-
methoxyphenoxy-propionic acid) compounds were obtained from
Sigma (St. Louis. MO, USA). Sodium perchlorate and sodium hexafluoro-
phosphate were obtained from Sigma-Aldrich. HPLC grade methanol
(MeOH) was purchased from Merck (Darmstadt, Germany). HPLC
water was obtained from Barnstead deionising system (Dubuque,
IA, USA). All mobile phases were filtered with Nylon 66 membrane fil-
ters (0.45 um) Whatman (Maidstone, England) by the use of a filtration
apparatus.

HPLC Conditions

Experiments were performed using a LaChrom HPLC Merck Hitachi
(E.Merck, Darmstadt, Germany) model equipped with diode array detec-
tor, column oven L-7350, and solvent degasser L-7612. The column
(150mm x 4.6mm [.D.) was packed with 5pum Astec Chirobiotic T
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(Sigma-Aldrich), its void volume was determined to be 2.05mL by
injection of blank mobile phase volume at a flow rate of I mL/min.
Retention data were recorded at a flow rate of 1 mL/min. The column
temperature was controlled by a thermostat. Solutions were prepared
at 0.1 mg/mL concentrations in methanol. The detection of the drugs
was set at 220 nm. Typical injection volumes were 3ul.. Mobile phases
consisted of 10% aqueous methanol solution and appropriate chaotropic
salt additives in concentration ranging from 10 to 60 mM in the whole
mobile phase.

RESULTS AND DISCUSSION
Effect of Chaotropic Salt Additives

The conducted analysis pertains to four acidic compounds existing in
ionized form in the examined conditions. It is obvious that mobile phase
influences not only the dissociation of the analytes (deprotonization of
acids) but also the ionizable groups of the chiral selector (-COO™,
-NHY). When unbuffered MeOH/water is used as the eluent system
(the pH is around 7-7.5), the selector is supposed to be net negatively
charged and acidic compounds will experience electrostatic repulsion.
This may be the reason for the fast elution of the acidic compounds.
Upon addition of salt, the ionic strength increases dramatically, which
reduces the electrostatic repulsion. This phenomenon is a consequence
of electrostatic interactions for which chaotropic ions are the most favor-
able. So, chaotropic ions: ClO; and PFg can interact with primary amine
groups of teicolpanin, thus, facilitating the approach of the acidic ana-
lytes to the stationary phase by nonspecific hydrophobic interactions.
As a result, both retention factors and separation factors increase with
the increasing concentration of these chaotropic salts in the mobile phase
(Figures 1-4). Comparison of data obtained for systems modified with
NaClO4 and NaPFg indicates that addition of a greater quantity of more
chaotropic salt (NaPF4 > NaClO4 according to Hofmeister series) to a
mobile phase is responsible for higher retention increase of acids
(Figure 5). Furthermore, dependency obtained for NaPF¢ shows different
trends in comparison to the discussed above NaClOy, relationships. Simi-
larly to plots obtained for NaClOy, the retention factor increases with
increasing NaPF¢ concentration, tending to achieve a limit at higher con-
centration. It is worthwhile to notice that this limitation could be
achieved at lower salt concentration (15mM), whereas for perchlorates
we need fourfold more of added salt to achieve the limiting retention fac-
tor. Further increase of salt concentration does not affect retention in the
case of addition of NaClO, as much as for NaPFy, for which the lowering
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Figure 2. Influence of perchlorate additives on tropic acid enantiomers

resolution.

of retention is observed. This lower affinity of anionic analytes to the
stationary phase at higher NaPFg concentration could be explained by
excess adsorption of chaotropic anions creating a negatively charged sur-
face, which repulses analytes possessing the same charge.
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Figure 5. Influence of hexafluorophosphate additives on retention factor of
acidic enantiomers: [l — mandelic acid, + — tropic acid, O — 2-(p-methoxy-
phenoxy)-propionic acid.

Summarizing, the observed phenomenon of chaotropic salts influence
on retention and enantioseparation of acids is a consequence of the
overall chaotropic effect, affecting specific and nonspecific interactions
occurring in mobile and stationary phases. It is well known that chao-
tropic ions could be very strong ion-ion interaction reagents and after
ion-pairing, could reduce the hydration enhancing the strength of hydro-
phobic interactions. On the basis of conducted experiments we can expect
that the addition of a chaotropic salt to the mobile phase allows an
increase of the retention time and improves enantioselectivity for
other acids on teicoplanin-based chiral stationary phase in reversed-phase
systems.

Thermodynamic Studies

The thermodynamic characteristics of the chromatographic process is
described by the following equation:

AHY1 AS°
Ink=-———+—+In®
n R T+R+n

where AS” and AH? are standard entropy changes and standard enthalpy
changes, respectively, R is gas constant (1.9872cal mol 'K™"), T is
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temperature in Kelvin degrees. For a linear plot of In k versus 1/T, the
slope and intercept are respectively: —AHO/ R and ASO/ R + In®, where
® is the phase ratio. Determination of @ is very complex in RP chroma-
tography. Among others, Melander and Horvath,*” Davydov?®!! and
Dorsey, proposed different ways of its calculation. The approximate
value of ® for this Chirobiotic column, based on the carbon content
equals 0.086. Taking into account that this is the constant value for the
individual column, the alternative way to compare entropy variations is
calculation of AS®* equals AS’/R + In®, which can be established directly
from the van’t Hoff relationship. In this way, all listed entropy variations
(AS"™) will be biased by RIn®. This bias will be cancelled for AAS entropy
changes.*?

The effect of temperature on the chromatographic retention
parameter (k) of investigated acidic enantiomers was determined for
two eluent systems containing 5 and 10mM NaPFg in 10% MeOH in
water, at the temperatures ranging from 5 to 20°C. NaPFg has a
stronger chaotropic effect according to Hofmeister series, causes bigger
retention increase, and enables analyzing acidic compounds at a wider
range of temperatures. Obtained, results were used to construct van’t
Hoff plots expressing In k vs 1/T relationship (Figure 6). The correla-
tions for all the investigated enantiomers were strictly linear with
correlation coefficient (R?) values of 0.98-0.99 indicating no changing
retention mechanism in both eluent systems studied. The standard
changes in enthalpy (AH®), entropy (AS™), and free energy (at 20°C)
(AG®) of the binding interactions between enantiomers and teicoplanin
bonded stationary phase, were calculated from the slopes and intercepts
of the van’t Hoff plots (Table 1). The calculated thermodynamic
parameters were all negative. The increase of chaotropic salt concentra-
tion, which is responsible for increasing of chiral recognition, caused
significant differences, especially in the enthalpy values (AH’), while
changes in entropy values were meaningful. The AAS® and AAH® values
were calculated and indicate that the enantioselectivity of compared elu-
ent systems was predominantly enthalpy driven. Changing of the added
salt concentration from 5mM to 10 mM does not change radically enan-
tioseparation. It is visible in figures and it could be expressed by AAG®
values, which are the following: —2.43, —0.17, —0.55kJ mol ™}, respec-
tively, for mandelic acid, tropic acid, and 2-(p-methoxyphenoxy)-
propionic acid in first eluent system and —2.00, —0.17, —0.51 kJ mol ™!
in the second one. The latter values (AAG®) were in excellent agree-
ment with the AAG® values derived from the chromatographic separation
factor o (AAG” = —RTlno) at 20°C either for system containing 5mM or
10mM NaPF.

Enthalpy-entropy compensation (EEC) studies demonstrating a lin-
ear correlation between AH” and AS®*, performed for acidic enantiomers
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Figure 6. The relationships between chromatographic retention expressed as In k
of investigated acidic enantiomers and temperature expressed as 1/T [1000/K].
(a) eluent system containing S mM NaPFg in 10% MeOH in water; (b) eluent sys-
tem containing 10 mM NaPFg in 10% MeOH in water.

were characterized by acceptable linearity (Figure 7). From the slope
of these linear plots, the compensation temperature, T, could be calcu-
lated. At this temperature, the enthalpy change is compensated by the
entropy change. Some authors suggest that the identical compensation
temperatures indicate that the processes occur via the same mechan-
ism.*3¢1 However, this common interpretation was definitely rejected
by investigations carried out by Carr et al.l’”! They showed that only
the relative contributions of enthalpy and entropy to the overall free
energy are the same. The compensation temperature obtained for acids
equals —30°C. At this temperature, Gibbs energies of transfer from
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Figure 7. Enthalpy-entropy compensation study on the teicoplanin stationary
phase.

mobile to the stationary phase will be the same for each solute from
the investigated group.

CONCLUSION

Acidic enantiomers were separated on teicoplanin based stationary
phases in reversed phase mode. It was found that the capacity and
separation factors were influenced by the chaotropicity and concentra-
tion of salt added to the mobile phase. By varying the amount of salt
additives, one can affect retention parameters and separation factors. It
was found that the increase of chaotropic salt additives causes increase
of acidic compounds retention factors, as well as their enantioresolution.
On the basis of van’t Hoff relationships, it appeared that the separation
on teicoplanin-based CSP in reversed-phase mode controlled by a chao-
tropic effect is enthalpy driven.
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